Obat adalah suatu zat yang dikonsumsi untuk menjaga kesehatan, menyembuhkan, dan mencegah penyakit. Penggunaan obat lazim kita temui dalam kehidupan sehari-hari, baik untuk keperluan penyembuhan, pencegahan penyakit maupun sebagai suplemen kesehatan. Meski begitu, kemudahan mendapatkan obat juga membawa dampak negatif. Misalnya, semakin banyak masyarakat yang menggunakan obat secara irasional. Pengetahuan masyarakat terkait penggolongan dan pola logo pada kemasan obat masih kurang sehingga obat yang diharapkan dapat menyembuhkan penyakit justru dapat membahayakan diri masyarakat yang mengkonsumsinya. Sebelumnya telah dilakukan penelitian untuk mengklasifikasikan jenis obat berbasis citra digital, namun proses cropping logo masih dilakukan secara manual. Oleh karena itu, penelitian ini mengusulkan metode baru untuk mengklasifikasikan jenis obat berdasarkan logo pada kemasannya menggunakan metode K-Nearest Neighbor (K-NN) dengan ekstraksi fitur warna. Tahapan metode yang diusulkan terdiri dari akuisisi citra, preprocessing, deteksi tepi, Circle Hough Transformation, segmentasi citra, cropping dan resize, ekstraksi fitur, dan klasifikasi. Berdasarkan hasil pengujian yang dilakukan, diperoleh tingkat akurasi sebesar 93,33%. Hasil pengujian tersebut menunjukkan bahwa metode yang diusulkan dapat mengklasifikasikan jenis obat dengan tingkat akurasi yang tinggi.