2013
DOI: 10.19026/rjaset.5.4283
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Fault Feature Extraction Method of Analog Circuit Based on Improved KPCA

Abstract: The Kernel Principal Component Analysis (KPCA) extracts the principal components by computing the population variance, which doesn't consider the difference between one class and the others. So, it makes against the fault diagnosis. For solving this problem, the study introduced Fisher classification function into The KPCA and proposed an improved FKPCA with the class information. Then, the algorithm was applied in analog-circuit fault feature extraction and the neural network was applied to diagnose the fault… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?