Abstract:The Kernel Principal Component Analysis (KPCA) extracts the principal components by computing the population variance, which doesn't consider the difference between one class and the others. So, it makes against the fault diagnosis. For solving this problem, the study introduced Fisher classification function into The KPCA and proposed an improved FKPCA with the class information. Then, the algorithm was applied in analog-circuit fault feature extraction and the neural network was applied to diagnose the fault… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.