The paper presents a fault region identification method for the active distribution network (ADN) with limited PMU. First, PMU configuration and region partition are developed based on the network topology. Next, the difference in three-phase current variations between the normal and fault areas of the ADN is analyzed. A multi-dimensional state monitoring matrix is built using the measured current data. The spectral norm ratio coefficient is constructed based on the 2-norm to lower the complexity of the multi-dimensional state monitoring matrix and quantify the difference in state changes before and after the fault occurs in each region. Then, the fault region is identified by combining each region’s spectral norm ratio coefficient and the change of the current phase. Finally, an IEEE 33-node simulation model is created to simulate faults under different working conditions. According to the simulation results, the suggested approach is less impacted by fault type, neutral point grounding mode, and transition resistance. Furthermore, even if the communication does not match the rigorous synchronization requirements, the suggested technique can still complete the fault identification of the distribution network correctly and has high robustness.