The Hausdorff distance is a very important metric for various image applications in computer vision including image matching, moving-object detection, tracking and recognition, shape retrieval and content-based image analysis. However, no efficient algorithm has been reported that computes the exact Hausdorff distance in linear time for comparing two images. Very few methods have been proposed to compute the approximate Hausdorff distance with higher approximation error. In this paper, we propose a linear time algorithm for computing the approximated Hausdorff distance with lower approximation error. The proposed method is effective to reduce the processing time, while minimizing the error rate in content-based image processing and analysis.