Workpiece surface defect detection is an indispensable part of intelligent production. The surface information obtained by traditional 2D image detection has some limitations due to the influence of environmental light factors and part complexity. However, the digital twin model has the characteristics of high fidelity and scalability, and the digital twin surface can be obtained by a device with a scanning accuracy of 0.02mm to achieve the representation of the real surface of the workpiece. The surface defect detection system for digital twin models is proposed based on the improved YOLOv5 model in this paper. Firstly, the digital twin model of the workpiece is reconstructed by the point cloud data obtained by the scanning device, and the surface features with defects are captured. Subsequently, the training dataset is calibrated based on the defect surface, where the defect types include Inclusion, Perforation, pitting surface and Rolled-in scale. Finally, the improved YOLOv5 model with CBAM mechanism and BiFPN module was used to identify the surface defects of the digital twin model and compare it with the original YOLOv5 model and other common models. The results show that the improved YOLOv5 model can realize the identification and classification of surface defects. Compared with the original YOLOv5 model, the mAP value of the improved YOLOv5 model has increased by 0.2%, and the model has high precision. On the basis of the same data set, the improved YOLOv5 model has higher recognition accuracy than other models, improving 11.7%, 3.4%, 6.2%, 33.5%, respectively. As a result, this study provides a practical and systematic detection method for digital twin model surface during the intelligent production process, and realizes the rapid screening of the workpiece with defects.