The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is greatly improved by an early and accurate diagnosis. Several studies have created automated methods to forecast PDAC development utilising various medical imaging modalities. These papers give a general overview of the classification, segmentation, or grading of many cancer types utilising conventional machine learning techniques and hand-engineered characteristics, including pancreatic cancer. This study uses cutting-edge deep learning techniques to identify PDAC utilising computerised tomography (CT) medical imaging modalities. This work suggests that the hybrid model VGG16–XGBoost (VGG16—backbone feature extractor and Extreme Gradient Boosting—classifier) for PDAC images. According to studies, the proposed hybrid model performs better, obtaining an accuracy of 0.97 and a weighted F1 score of 0.97 for the dataset under study. The experimental validation of the VGG16–XGBoost model uses the Cancer Imaging Archive (TCIA) public access dataset, which has pancreas CT images. The results of this study can be extremely helpful for PDAC diagnosis from computerised tomography (CT) pancreas images, categorising them into five different tumours (T), node (N), and metastases (M) (TNM) staging system class labels, which are T0, T1, T2, T3, and T4.