Our aging population, diabetes, and obesity have fueled the growth of chronic wounds seen throughout the world. Often, wounds are a marker of poor health that leads to increased mortality rates. However, the diagnosis and treatment of these wounds are challenging. Incorrectly differentiating between chronic wounds and other complex conditions can lead to adverse events. Artificial intelligence (AI) has been shown to offer some early benefits, and we hypothesized that it may enhance wound care but also carry some notable risks. We performed a detailed search using PubMed, Scopus, Cumulated Index in Nursing and Allied Health Literature, and Web of Science for AI applications in wound care. AI was found to be applied to wound diagnosis and characterization, wound monitoring for tissue change, daily therapy, and prevention and prognostics. AI made for more efficient and accurate wound assessments, less painful assessments of chronic wounds, more personalized treatment, and improved prognostic prediction capabilities. AI also allowed for more precise at-home observation and care, facilitating earlier wound treatment as needed. Challenges associated with AI included how to best allocate AI-assisted technologies equitably, how to safely maintain patient data, and how to diversify datasets for algorithm training. Because the algorithms are not transparent, validating findings may be challenging. AI presents a powerful tool in several aspects of advanced wound care and has the potential to improve diagnoses, accelerate healing, reduce pain, and improve the cost-effectiveness of wound care. More research needs to be done into how to best incorporate AI into daily clinical practice while keeping clinicians aware of the potential risks of using these evolving technologies.