2017
DOI: 10.1016/j.bspc.2016.07.002
|View full text |Cite
|
Sign up to set email alerts
|

A novel gene identification algorithm with Bayesian classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 62 publications
0
2
0
2
Order By: Relevance
“…Subsequently, the classification algorithms are tested using the testing datasets to verify its performance in detection. Table 2 shows the obtained results of the four Bayesian classifiers when applied to the E. coli MG1655 bacterial strain being compared to the GLIMMER, GeneMark gene finding software, and to the period-3 gene detection algorithm proposed in [5]. The performance of the four Bayesian classifiers is assessed using the True Positive Rate (TPR, also referred to as sensitivity), the False Positive Rate (FPR, also known as fall-out), the False Negative Rate (FNR) and the True Negative Rate (TNR, also referred to as specificity).…”
Section: Simulation Results and Analysismentioning
confidence: 99%
“…Subsequently, the classification algorithms are tested using the testing datasets to verify its performance in detection. Table 2 shows the obtained results of the four Bayesian classifiers when applied to the E. coli MG1655 bacterial strain being compared to the GLIMMER, GeneMark gene finding software, and to the period-3 gene detection algorithm proposed in [5]. The performance of the four Bayesian classifiers is assessed using the True Positive Rate (TPR, also referred to as sensitivity), the False Positive Rate (FPR, also known as fall-out), the False Negative Rate (FNR) and the True Negative Rate (TNR, also referred to as specificity).…”
Section: Simulation Results and Analysismentioning
confidence: 99%
“…En un estudio de clasificación de regiones codificantes de proteínas en genomas procariotas realizado por Al Bataineh (Al Bataineh & Al-qudah, 2017), proponen un algoritmo para la clasificación de genes utilizando un clasificador bayesiano, obteniendo resultados competitivos, en comparación con los métodos de detección de genes conocidos en procariotas como GLIMMER y GeneMark dando oportunidad de utilizar su algoritmo para la detección de enfermedades.…”
Section: Trabajos Relacionadosunclassified
“…En un estudio de clasificación de regiones codificantes de proteínas en genomas procariotas realizado por Al Bataineh (Al Bataineh & Al-qudah, 2017), proponen un algoritmo para la clasificación de genes utilizando un clasificador bayesiano, obteniendo resultados competitivos, en comparación con los métodos de detección de genes conocidos en procariotas como GLIMMER y GeneMark dando oportunidad de utilizar su algoritmo para la detección de enfermedades.…”
Section: Trabajos Relacionadosunclassified