The vulnerability of civil receivers of the Global Satellite Navigation System (GNSS) to spoofing jamming has raised significant concerns in recent times. Traditional multi-antenna spoofing detection methods are limited in application scenarios and come with high hardware costs. To address this issue, this paper proposes a novel GNSS spoofing detection method utilizing three low-cost collinear antennas. By leveraging the collinearity information of the antennas, this method effectively constrains the observation equation, leading to improved estimation accuracy of the pointing vector. Furthermore, by employing a binary statistical detection model based on the sum of squares (SSE) between the observed value and the estimated value of the pointing vector, real-time spoofing signal detection is enabled. Simulation results confirm the efficacy of the proposed statistical model, with the error of the skewness coefficient not exceeding 0.026. Experimental results further demonstrate that the collinear antenna-based method reduces the standard deviation of the angle deviation of the pointing vector by over 55.62% in the presence of spoofing signals. Moreover, the experiments indicate that with a 1 m baseline, this method achieves 100% spoofing detection.