2023
DOI: 10.1002/cta.3566
|View full text |Cite
|
Sign up to set email alerts
|

A novel hardware authentication primitive against modeling attacks

Abstract: Traditional hardware security primitives such as physical unclonable functions (PUFs) are quite vulnerable to machine learning (ML) attacks. The primary reason is that PUFs rely on process mismatches between two identically designed circuit blocks to generate deterministic math functions as the secret information sources. Unfortunately, ML algorithms are pretty efficient in modeling deterministic math functions. In order to resist against ML attacks, in this letter, a novel hardware security primitive named ne… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 29 publications
0
0
0
Order By: Relevance