2024
DOI: 10.1007/s44196-024-00601-w
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Hierarchical High-Dimensional Unsupervised Active Learning Method

Sajad Haghzad Klidbary,
Mohammad Javadian

Abstract: This paper processes a novel hierarchical high-dimensional clustering algorithm based on the Active Learning Method (ALM), which is a fuzzy-learning algorithm. The hierarchical part of the algorithm is composed of two phases: divisible and agglomerative. The divisible phase, a zooming-in-process, searches for sub-clusters in already-found clusters hierarchically. At each level of the hierarchy, the clusters are found by an ensemble clustering method based on the density of data. This part of the algorithm blur… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 52 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?