Abstract-We experimentally demonstrate for the first time the degenerate band edge (DBE) condition, namely the degeneracy of four Bloch modes, in loaded circular metallic waveguides. The four modes forming the DBE represent a degeneracy of fourth order occurring in a periodic structure where four Bloch modes, two propagating and two evanescent, coalesce. It leads to a very flat wavenumber-frequency dispersion relation, and the finitelength structure's quality factor scales as N 5 where N is the number of unit cells. The proposed waveguide in which DBE is observed here is designed by periodically loading a circular waveguide with misaligned elliptical metallic rings, supported by a low-index dielectric. We validate the existence of the DBE in such structure using measurements and we report good agreement between full-wave simulation and the measured response of the waveguide near the DBE frequency; taking into account metallic losses. We correlate our finding to theoretical and simulation results utilizing various techniques including dispersion synthesis, as well as observing how quality factor and group delay scale as the structure length increases. Moreover, the reported geometry is only an example of metallic waveguide with DBE: DBE and its characteristics can also be designed in many other kinds of waveguides and various applications can be contemplated as high microwave generation in amplifiers and oscillators based on an electron beam interaction or solid state devices, pulse compressors and microwave sensors.Index Terms-Degenerate band edge (DBE), slow-wave structures, cavity resonators.