Akciğer kanseri, dünya genelinde yaygın olarak görülen ve yüksek ölüm oranına sahip kanser türlerinden biridir. Bu hastalığın erken teşhisi, yaşam süresini uzatmak ve tedavi başarısını artırmak açısından hayati önem taşımaktadır. Bu çalışmada, histopatolojik görüntülerden akciğer kanserinin sınıflandırılmasına odaklanılmış ve rezidüel tabanlı modellerin (ResNet18, ResNet34, ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152, ResNet152V2) sınıflandırma üzerindeki başarımı incelenmiştir. Veri seti olarak adenokarsinom, iyi huylu ve skuamöz hücreli karsinom olmak üzere üç sınıf içeren ve her sınıfta 5000 görüntünün olduğu LC25000 veri seti kullanılmıştır. Test edilen modeller arasında ResNet18 %99,90 doğruluk oranı ile en yüksek sınıflandırma performansı göstermiştir. Elde edilen sonuçlar, ResNet tabanlı modellerin karmaşık histopatolojik görüntüleri doğru bir şekilde sınıflandırmada üstün performans sergilediğini ve akciğer kanseri teşhisinde derin öğrenme yöntemlerinin pratik bir çözüm sunabileceğini göstermektedir.