2021 5th International Conference on Pattern Recognition and Image Analysis (IPRIA) 2021
DOI: 10.1109/ipria53572.2021.9483475
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Hybrid Pyramid Texture-Based Facial Expression Recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 28 publications
0
1
0
Order By: Relevance
“…AnotherFERmethodispresentedusingtwodescriptors,whicharerespectivelytheOriented GradientHistogram(HOG)andtheLocalBinaryPatterns(LBP).Thetwodescriptorsareusedintwo differentways;locallyusingthefacialsub-regions(blocks)(l-HOGandl-LBP)andgloballyusing theentirefacialimage(g-HOG,g-LBP).Descriptorsgeneratedfromthepreviousbuildingblocks generatealargeamountofinformation.Forthis,theLocallyLineardimensionalityreductiontechnique isusedtoreducetheamountofinformation (Yaddaden,Adda,&Bouzouane,2021).Acombination ofPyramidalLocalBinaryPattern(PLBP)andPyramidalLocalPhaseQuantization(PLPQ)isused torecognizefacialexpressionsatalowresolution (Fallah,Ebrahimpour-Komleh,&Mousavirad, 2021).LBPisusedtoextractfeaturesinthespatialdomainandLPQisusedtoextractfeaturesinthe frequencydomain.ThecombinationofPLBPandPLPQinafeaturevectorcanprovideimportant informationthatcanbeexploitedbytheKNearestNeighbor.Theextractionofdiscriminatingfeatures canbeperformedusingmodifiedHOGandLBPfeaturedescriptors (Lakshmi,&Ponnusamy,2021). ThemodifiedHOGisconcatenatedwiththeLBPhistogramtogeneratearobustdescriptor.Then, DeepStackedAutoEncoders(DSAE)(Tewarietal.,2017)isusedtoreducethedimensionalityof concatenatedfeatures.Finally,amulti-classSVMisusedtorecognizefacialexpressions.…”
Section: Related Workmentioning
confidence: 99%
“…AnotherFERmethodispresentedusingtwodescriptors,whicharerespectivelytheOriented GradientHistogram(HOG)andtheLocalBinaryPatterns(LBP).Thetwodescriptorsareusedintwo differentways;locallyusingthefacialsub-regions(blocks)(l-HOGandl-LBP)andgloballyusing theentirefacialimage(g-HOG,g-LBP).Descriptorsgeneratedfromthepreviousbuildingblocks generatealargeamountofinformation.Forthis,theLocallyLineardimensionalityreductiontechnique isusedtoreducetheamountofinformation (Yaddaden,Adda,&Bouzouane,2021).Acombination ofPyramidalLocalBinaryPattern(PLBP)andPyramidalLocalPhaseQuantization(PLPQ)isused torecognizefacialexpressionsatalowresolution (Fallah,Ebrahimpour-Komleh,&Mousavirad, 2021).LBPisusedtoextractfeaturesinthespatialdomainandLPQisusedtoextractfeaturesinthe frequencydomain.ThecombinationofPLBPandPLPQinafeaturevectorcanprovideimportant informationthatcanbeexploitedbytheKNearestNeighbor.Theextractionofdiscriminatingfeatures canbeperformedusingmodifiedHOGandLBPfeaturedescriptors (Lakshmi,&Ponnusamy,2021). ThemodifiedHOGisconcatenatedwiththeLBPhistogramtogeneratearobustdescriptor.Then, DeepStackedAutoEncoders(DSAE)(Tewarietal.,2017)isusedtoreducethedimensionalityof concatenatedfeatures.Finally,amulti-classSVMisusedtorecognizefacialexpressions.…”
Section: Related Workmentioning
confidence: 99%