Floods are recognised as one of the most destructive and costliest natural disasters in the world, which impact the lives and livelihoods of millions of people. To tackle the risks associated with flood disasters, there is a need to think beyond structural interventions for flood protection and move to more non-structural ones, such as flood early warning systems (FEWSs). Firstly, this study aimed to uncover how flood forecasting models in the FEWSs have evolved over the past three decades, 1993 to 2023, and to identify challenges and unearth opportunities to assist in model selection for flood prediction. Secondly, the study aimed to assist in model selection and, in return, point to the data and other modelling components required to develop an operational flood early warning system with a focus on data-scarce regions. The scoping literature review (SLR) was carried out through a standardised procedure known as Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The SLR was conducted using the electronic databases Scopus and Web of Science (WoS) from 1993 until 2023. The results of the SLR found that between 1993 and 2010, time series models (TSMs) were the most dominant models in flood prediction and machine learning (ML) models, mostly artificial neural networks (ANNs), have been the most dominant models from 2011 to present. Additionally, the study found that coupling hydrological, hydraulic, and artificial neural networks (ANN) is the most used ensemble for flooding forecasting in FEWSs due to superior accuracy and ability to bring out uncertainties in the system. The study recognised that there is a challenge of ungauged and poorly gauged rainfall stations in developing countries. This leads to data-scarce situations where ML algorithms like ANNs are required to predict floods. On the other hand, there are opportunities to use Satellite Precipitation Products (SPP) to replace missing or poorly gauged rainfall stations. Finally, the study recommended that interdisciplinary, institutional, and multisectoral collaborations be embraced to bridge this gap so that knowledge is shared for a faster-paced advancement of flood early warning systems.