Magnetic nanoparticle-mediated hyperthermia (MNHT) can heat tumor tissue to the desired temperature without damaging surrounding normal tissue. The MNHT system consists of targeting tumor with functional magnetic nanoparticles (MNPs) and then applying an external alternating magnetic field (AMF) to generate heat in the MNPs. Temperature in the tumor tissue is increased to above 43 C, which causes necrosis of cancer cells but does not damage surrounding normal tissue. Among available MNPs, magnetite has been extensively studied. Recent years have seen remarkable advances in MNHT; both functional MNPs and AMF generators have been developed. By applying MNHT, heat shock proteins (HSPs) are highly expressed within and around tumor tissue, which causes intriguing biological responses such as tumor-specific immune response. These results suggest that MNHT is able to kill not only tumors exposed to heat treatment, but also unheated metastatic tumors at distant sites. Currently, some researchers have started clinical trials, suggesting that the time has come for clinical applications.