The optimal power flow (OPF) module optimizes the generation, transmission, and distribution of electric power without disrupting network power flow, operating limits, or constraints. Similarly to any power flow analysis technique, OPF also allows the determination of system’s state of operation, that is, the injected power, current, and voltage throughout the electric power system. In this context, there is a large range of OPF problems and different approaches to solve them. Moreover, the nature of OPF is evolving due to renewable energy integration and recent flexibility in power grids. This paper presents an original hybrid imperialist competitive and grey wolf algorithm (HIC-GWA) to solve twelve different study cases of simple and multiobjective OPF problems for modern power systems, including wind and photovoltaic power generators. The performance capabilities and potential of the proposed metaheuristic are presented, illustrating the applicability of the approach, and analyzed on two test systems: the IEEE 30 bus and IEEE 118 bus power systems. Sensitivity analysis has been performed on this approach to prove the robustness of the method. Obtained results are analyzed and compared with recently published OPF solutions. The proposed metaheuristic is more efficient and provides much better optimal solutions.