Background/Introduction: Plasma protein binding (PPB) continues to be a key aspect of antibiotic development and clinical use. PPB is essential to understand several properties of drug candidates, including antimicrobial activity, drug-drug interaction, drug clearance, volume of distribution, and therapeutic index. Focus areas of the review: In this review, we discuss the basics of PPB, including the main drug binding proteins i.e., Albumin and α-1-acid glycoprotein (AAG). Furthermore, we present the effects of PPB on the antimicrobial activity of antibiotics and the current role of PPB in in vitro pharmacodynamic (PD) models of antibiotics. Moreover, the effect of PPB on the PK/PD of antibiotics has been discussed in this review. A key aspect of this paper is a concise evaluation of PPB between animal species (dog, rat, mouse, rabbit and monkey) and humans. Our statistical analysis of the data available in the literature suggests a significant difference between antibiotic binding in humans and that of dogs or mice, with the majority of measurements from the pre-clinical species falling within five-fold of the human plasma value. Conversely, no significant difference in binding was found between humans and rats, rabbits, or monkeys. This information may be helpful for drug researchers to select the most relevant animal species in which the metabolism of a compound can be studied for extrapolating the results to humans. Furthermore, state-of-the-art methods for determining PPB such as equilibrium dialysis, ultracentrifugation, microdialysis, gel filtration, chromatographic methods and fluorescence spectroscopy are highlighted with their advantages and disadvantages.