2021
DOI: 10.1109/access.2021.3114496
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Intelligent Garbage Classification System Based on Deep Learning and an Embedded Linux System

Abstract: The dramatic increase in the amount of garbage and complex diversity of the materials in the garbage bring serious environmental pollution problems and wastes resources. Recycling reduces waste but manual pipeline waste sorting involves a harsh working environment at high labor intensity with low sorting efficiency. In our paper, a novel intelligent garbage classification system based on deep learning and an embedded Linux system is proposed. The system is divided into three parts. First, a Raspberry Pi 4B is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
3
1
1

Relationship

0
10

Authors

Journals

citations
Cited by 44 publications
(20 citation statements)
references
References 26 publications
0
19
0
1
Order By: Relevance
“…Fu et al proposed a new migration learning-based GNet model for rubbish classification and an improved Mobile-NetV3 model, with an average accuracy of 92.62% [21].…”
Section: Rabano Et Al Applied the Mobilenet Model To The Trashnetmentioning
confidence: 99%
“…Fu et al proposed a new migration learning-based GNet model for rubbish classification and an improved Mobile-NetV3 model, with an average accuracy of 92.62% [21].…”
Section: Rabano Et Al Applied the Mobilenet Model To The Trashnetmentioning
confidence: 99%
“…Meanwhile, some researchers [17] use technologies including AI and IoT to manage the whole garbage classification process. Chuang et al [18] proposed an intelligent classifier and an environment monitor system to realize automatic classification and supervision.…”
Section: Related Workmentioning
confidence: 99%
“…También, ha habido intentos de implementar CNNs más ligeras con pocas capas para reducir tiempos de entrenamiento e inferencia como en (Altikat et al, 2022) con bastante peor tasa de reconocimiento, o incluso de embeber este tipo de CNNs en sistemas de CPU integrada del tipo Raspberry Pi 4 como en (Fu et al, 2021), para así diseñar sistemas portables y poder controlar actuadores desde la salida del reconocimiento. ticulares de una mano Allegro y los valores de presión de los sensores resistivos colocados sobre los dedos.…”
Section: Trabajos Relacionadosunclassified