2017
DOI: 10.1016/j.knosys.2016.10.022
|View full text |Cite
|
Sign up to set email alerts
|

A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
73
0
7

Year Published

2018
2018
2022
2022

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 185 publications
(80 citation statements)
references
References 23 publications
0
73
0
7
Order By: Relevance
“…6 Modifying the 0 value of M new as 3 do. 7 Perform the D-S fusion calculation once again as 4 does, and get the finally fusion results. , which is not consistent with normal acceptable target A.…”
Section: Of 21mentioning
confidence: 99%
See 1 more Smart Citation
“…6 Modifying the 0 value of M new as 3 do. 7 Perform the D-S fusion calculation once again as 4 does, and get the finally fusion results. , which is not consistent with normal acceptable target A.…”
Section: Of 21mentioning
confidence: 99%
“…Due to the unavoidable limitation in terms of accuracy and robustness in the feature extraction approaches of traditional shallow learning, Lu [6] investigated the deep learning method based on a convolutional neural network (CNN), the novel feature representation method for bearing data using supervised deep learning with the goal of identifying more robust and salient feature representations to reduce information loss, and two experiments had proved the efficiency of the proposed method. Wei [7] proposed a new adaptive features selection technique applied to the bearing fault diagnosis with affinity propagation clustering, and results demonstrated that the approach is able to reliably and accurately identify different fault categories and severities of bearings. For the studies shown above and others [8][9][10][11], they all aimed at the failure of one single point on the bearings; the current methods of feature automatic extraction and automatic classification didn't consider the failure conditions of multiple faults combined.…”
mentioning
confidence: 99%
“…El sistema carga el archivo de configuración con adquisición diaria y empieza a comparar el tiempo real hasta que coincide. La adquisición se realiza con una frecuencia de muestreo de 40KHz, que según el estado del arte [14] es apropiada para la detección de fallos de señales de vibración. Después de realizar la adquisición diaria, el sistema establece la comunicación con el servidor FTP.…”
Section: Figura 3 Módulo De Controlunclassified
“…Más específicamente, para monitorizar las señales de vibración de las máquinas giratorias se han desarrollado WSN, basado en Compuertas Programables en Campo (Field Programmable Gate Array FPGA) [6] o Sistemas Microelectromecanicos (Microelectromechanical Systems MEMs) [13], aunque con frecuencias de muestreo máximo de 20 kHz. Sin embargo lo anterior representa un problema, ya que muchas fallas que se quieren analizar al monitorear máquinas rotativas están presentes en frecuencias de hasta 12 kHz [14]. De acuerdo con el teorema de Nyquist, la frecuencia de muestreo para el monitoreo de máquinas rotativas debe ser de al menos 25 kHz.…”
Section: Introductionunclassified
“…A novel optimal feature selection approach was presented which can be a benefit for fault detection and diagnosis in smart buildings [8]. A novel intelligent fault diagnosis method was proposed for the rolling bearing based on the adaptive feature selection technique [9]. Kang et al suggested a hybrid feature selection method to reduce diagnostic performance deterioration in data-driven PHM system [10].…”
Section: Introductionmentioning
confidence: 99%