Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients.Myeloproliferative neoplasms (MPNs), that include Polycytemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are clonal hematopoietic stem cell disorders characterized by increased proliferation of terminally differentiated myeloid cells. In 2005, the JAK2V617F mutation was found to be present in almost all patients with PV, and in 60% of those with ET and PMF. 1 In addition, somatic mutations of JAK2 exon 12 are found in approximately 50% of JAK2V617F negative PV and activating mutations of the thrombopoietin receptor gene MPL are present in 5-10% of JAK2 negative ET or PMF. 2 Other mutations in several epigenetic modifiers, such as ASXL1, DNMT3a,