In order to address the challenges associated with free lipase in organic solvents, including aggregation, poor stability, and low catalytic efficiency, this study developed two types of poly(o-phenylenediamine) microspheres (solid and hollow) as supports for immobilizing lipase. The immobilization process utilized an adsorption method, with the poly(o-phenylenediamine) hollow microspheres being identified as the optimal support in a 2:5 enzyme-to-support ratio. On this basis, the lipase was immobilized by the covalent binding method. The immobilization conditions consisted of treating the support with 2% glutaraldehyde and immobilization at 40 °C for 2 h in pH 7.0 buffer. The specific activity of the immobilized enzyme was 5.3 times higher than that of the free enzyme. Covalent-binding immobilized lipase was also used for the preparation of citronellyl acetate by transesterification reaction, and, in optimized reaction conditions where the amount of immobilized enzyme was 0.1 g/mL, the reaction temperature was 50 °C and the shaking speed was 200 r/min during the reaction. Under these conditions, the citronellyl acetate yields can exceed 99% after 2 h. Furthermore, the stability of the immobilized lipase was investigated, and the residual activity of the immobilized enzyme was 95% after seven repetitions, while that of the free enzyme was only 70%. After 56 days of storage at room temperature, the immobilized enzyme retained 60% of its original viability, while the free enzyme retained only 31%.