Purpose
A pandemic disease elicited by the SARS-CoV-2 virus has become a serious health issue due to infecting millions of people all over the world. Recent publications prove that artificial intelligence (AI) can be used for medical diagnosis purposes, including interpretation of X-ray images. X-ray scanning is relatively cheap, and scan processing is not computationally demanding.
Material and methods
In our experiment a baseline transfer learning schema of processing of lung X-ray images, including augmentation, in order to detect COVID-19 symptoms was implemented. Seven different scenarios of augmentation were proposed. The model was trained on a dataset consisting of more than 30,000 X-ray images.
Results
The obtained model was evaluated using real images from a Polish hospital, with the use of standard metrics, and it achieved accuracy = 0.9839, precision = 0.9697, recall = 1.0000, and F1-score = 0.9846.
Conclusions
Our experiment proved that augmentations and masking could be important steps of data pre-processing and could contribute to improvement of the evaluation metrics. Because medical professionals often tend to lack confidence in AI-based tools, we have designed the proposed model so that its results would be explainable and could play a supporting role for radiology specialists in their work.