Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common cause of pulmonary hypertension (PH) worldwide and is strongly associated with adverse clinical outcomes. The American Heart Association recently highlighted a call to action regarding the distinct lack of evidence-based treatments for PH due to poorly understood pathophysiology of PH attributable to HFpEF (PH-HFpEF). Prior studies have described cardio-physiological mechanisms to explain the development of isolated postcapillary PH (ipc-PH); however, the consequent increased pulmonary vascular (PV) resistance (PVR) may lead to the less understood and more fatal combined pre- and postcapillary PH (cpc-PH). Metabolic disease and inflammatory dysregulation have been suggested to predispose cpc-PH, yet the molecular mechanisms are unknown. Although PH-HFpEF has been studied to partly share vasoactive neurohormonal mediators with primary pulmonary arterial hypertension (PAH), clinical trials that have targeted these pathways have been unsuccessful. The increased mortality of PH-HFpEF patients necessitates further study into viable mechanistic targets involved in disease progression. We aim to summarize the current pathophysiological and clinical understanding of PH-HFpEF, highlight the role of known molecular mechanisms in the progression of PV disease, and introduce a novel concept that lipid metabolism may be attenuating and propagating PH-HFpEF.