Abstract:We research on the possible orientations patterns of a grid graph G, and propose a method for counting certain combinatorial structures over the class of orientations of G. For example, our method can be applied for counting sink-free orientations of G, as well as it can be applied for solving the #2SAT problem for grid Boolean formulas. Our proposal extends the classical transfer matrix method used for counting the number of independent sets in a grid.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.