“…In order to effectively identify the feature information contained in the fault signal of rotating machinery and reveal its inherent characteristics, many fault feature extraction methods of rotating machinery have been proposed, such as empirical mode decomposition (EMD) [7,8], mathematical morphology filtering [9,10], wavelet decomposition [11,12], adaptive filtering [13,14], matching pursuit [15,16], cyclostationary signal analysis [17,18], Wiener filter [19], Kalman filter [20,21], and stochastic resonance [22,23] that are widely used in early fault diagnosis of rotating machinery. The EMD proposed by Huang et al [7] is a nonstationary signal analysis method, which can find the hidden characteristic information in the signal, and has been widely used in the extraction and noise reduction of the impact signal of rotating machinery.…”