Over the years, developments in oncology led to significantly improved clinical outcome for cancer patients. However, cancer recurrence after initial treatment response still poses a major challenge, as it often involves more aggressive, metastatic disease. The presence of dormant cancer cells is associated with recurrence, metastasis, and poor clinical outcome, suggesting that these cells may play a crucial role in the process of disease relapse. Cancer cell dormancy typically presents as growth arrest while retaining proliferative capacity and can be induced or reversed by a wide array of cell-intrinsic and cell-extrinsic factors. Conventional therapies preferentially target fast-dividing cells, leaving dormant cancer cells largely insensitive to these treatments. In this review, we discuss the role of dormant cancer cells in cancer recurrence and highlight how novel therapy strategies based on cell-cycle modulation, modifications of existing drugs, or enhanced drugdelivery vehicles may be used to specifically target this subpopulation of tumor cells, and thereby have the potential to prevent disease recurrence.