The increasing worldwide demand on urban road transportation systems requires more restrictive measures and policies to reduce congestion, time delay and pollution. Autonomous vehicle mobility services, both shared and private, are possibly a good step towards a better road transportation future. This article aims to study the expected impact of private autonomous vehicles on road traffic parameters from a macroscopic level. The proposed methodology focuses on finding the different effects of different combinations of autonomous vehicle penetration and Passenger Car Units (PCU) on the chosen road traffic model. Four parameters are studied: traveled daily kilometers, daily hours, total daily delay and average network speed. The analysis improves the four parameters differently by implementing autonomous vehicles. The parameter total delay has the most significant reduction. Finally, several mathematical models are developed for the percentage of improvement for each chosen parameter.