The improvement of search engines for geospatial data on the World Wide Web has been a subject of research, particularly concerning the challenges in discovering and utilizing geospatial web services. Despite the establishment of standards by the Open Geospatial Consortium (OGC), the implementation of these services varies significantly among providers, leading to issues in dataset discoverability and usability. This paper presents a proof of concept for a search engine tailored to geospatial services in Switzerland. It addresses challenges such as scraping data from various OGC web service providers, enhancing metadata quality through Natural Language Processing, and optimizing search functionality and ranking methods. Semantic augmentation techniques are applied to enhance metadata completeness and quality, which are stored in a high-performance NoSQL database for efficient data retrieval. The results show improvements in dataset discoverability and search relevance, with NLP-extracted information contributing significantly to ranking accuracy. Overall, the GeoHarvester proof of concept demonstrates the feasibility of improving the discoverability and usability of geospatial web services through advanced search engine techniques.