In the course of an artificially triggered avalanche, a particle tracking procedure is combined with supplementary measurements, including Global Navigation Satellite System (GNSS) positioning, terrestrial laser scanning and Doppler radar measurements. Specifically, an intertial measurement unit is mounted inside a rigid sphere, which is placed in the avalanche track. The sphere is entrained by the moving snow, recording translational accelerations, angular velocities and the flux density of Earth's magnetic field. Based on the recorded data, we present a threefold analysis: (i) a qualitative data interpretation, identifying different particle motion phases which are associated with corresponding flow regimes, (ii) a quantitative time integration algorithm, determining the corresponding particle trajectory and associated velocities on the basis of standard sensor calibration, and (iii) an improved quantitative evaluation relying on a novel in situ sensor calibration technique, which is motivated by the limitations of the given dataset. The final results, i.e. the evolution of the angular orientation of the sensor unit, translational and rotational velocities and estimates of the sensor trajectory, are assessed with respect to their reliability and relevance for avalanche dynamics as well as for future design of experiments.