This research proposed a novel global maximum power point tracking (global-MPPT) algorithm. The proposed algorithm eliminates the perturbation and observation (P&O) technique disturbance problem that the power point will be stuck at the local peak power point under a partial shading condition (PSC). The proposed global-MPPT algorithm detects the photovoltaic module (PV-M) environment irradiance level by the relationship between the output power and voltage of the PV-M. In the proposed algorithm, the important parameter w is determined by the PV-M output power and irradiance level, which is also the compensation parameter that corresponds to the relationship of temperature. The proposed global-MPPT algorithm is aimed to predict the best duty cycle of the global-MPPT based on the irradiance level, parameter w, PV-M output voltage, and load, and then achieve the maximum power point (MPP) quickly and accurately. The measurement results under UIC and PSC verify that the proposed global-MPPT technique performs better than the particle swarm optimization (PSO) and P&O techniques. This research contributes to the proposed method that can find the global-MPP in time based on the irradiance level, temperature, and load.