Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accurate daily streamflow estimates are crucial for water resources management. Yet, many regions lack high‐temporal‐resolution data due to limited monitoring infrastructure, often relying on monthly aggregates or intermittent observations. Predicting streamflow in these sparsely sampled watersheds remains challenging. This study proposes a deep learning‐based approach using Long Short‐Term Memory, leveraging its inherent advantages in learning long‐term dependencies within hydrological variables and processes to enhance streamflow predictions in sparsely sampled watersheds. The approach was evaluated for simulating daily flow patterns from monthly aggregated and monthly or weekly intermittent observations in two contrasting hydrological settings: near‐natural and human‐influenced watersheds. Results showed that the proposed approach reliably predicts daily flows from monthly aggregates with a median Nash‐Sutcliffe efficiency (NSE) of 0.61 for near‐natural and 0.48 for human‐influenced watersheds. The proposed approach performed even better for daily flow predictions from monthly or weekly intermittent observation, achieving a median NSE of 0.70 and 0.55 for near‐natural and human‐influenced watersheds, respectively. The proposed approach remained robust across different seasons and hydrological regimes, with a median percentage bias of ±5%, except in arid regions. Moreover, data sensitivity analysis indicated that data from wet seasons were crucial for improving model predictions and that weekly data could yield results comparable to daily observations. Overall, this study demonstrates that the deep learning‐based approach offers a robust and accurate representation of daily streamflow patterns from aggregated or intermittent observations, providing valuable hydrological insights and promising solutions for improving water resource management in regions with limited monitoring infrastructures.
Accurate daily streamflow estimates are crucial for water resources management. Yet, many regions lack high‐temporal‐resolution data due to limited monitoring infrastructure, often relying on monthly aggregates or intermittent observations. Predicting streamflow in these sparsely sampled watersheds remains challenging. This study proposes a deep learning‐based approach using Long Short‐Term Memory, leveraging its inherent advantages in learning long‐term dependencies within hydrological variables and processes to enhance streamflow predictions in sparsely sampled watersheds. The approach was evaluated for simulating daily flow patterns from monthly aggregated and monthly or weekly intermittent observations in two contrasting hydrological settings: near‐natural and human‐influenced watersheds. Results showed that the proposed approach reliably predicts daily flows from monthly aggregates with a median Nash‐Sutcliffe efficiency (NSE) of 0.61 for near‐natural and 0.48 for human‐influenced watersheds. The proposed approach performed even better for daily flow predictions from monthly or weekly intermittent observation, achieving a median NSE of 0.70 and 0.55 for near‐natural and human‐influenced watersheds, respectively. The proposed approach remained robust across different seasons and hydrological regimes, with a median percentage bias of ±5%, except in arid regions. Moreover, data sensitivity analysis indicated that data from wet seasons were crucial for improving model predictions and that weekly data could yield results comparable to daily observations. Overall, this study demonstrates that the deep learning‐based approach offers a robust and accurate representation of daily streamflow patterns from aggregated or intermittent observations, providing valuable hydrological insights and promising solutions for improving water resource management in regions with limited monitoring infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.