2014
DOI: 10.1007/s11071-014-1717-2
|View full text |Cite
|
Sign up to set email alerts
|

A novel neural network-based adaptive control for a class of uncertain nonlinear systems in strict-feedback form

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
23
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 37 publications
(24 citation statements)
references
References 38 publications
0
23
0
1
Order By: Relevance
“…이러한 비선형 불확실성 문제를 해결하기 위해 신경 회로망(neural network) 또는 퍼지 논리 시 스템(fuzzy logic system)을 이용한 함수 근사화 기반 제어 기법 들이 연구되었다 [1][2]. 이러한 기법들에서 외부의 시변 외란은 적응 제어 방식을 통하여 외란의 유계치를 추정하거나 [3], 르아 브노브 안정도 증명과정에서 균일 궁극 유계(uniform ultimate bounds) 분석을 통해 유계치로 간주되었다 [4]. 따라서 보다 시변 외란의 효율적인 보상을 위해 외란 관측기 이용한 방법들이 다양 한 비선형 시스템에 적용되고 있다 [5].…”
Section: 서 론 불확실성을 갖는 비선형 시스템을 위한 제어이론은 다양한 기 계 전기 시스템 등의 응용 분야에 적용되unclassified
“…이러한 비선형 불확실성 문제를 해결하기 위해 신경 회로망(neural network) 또는 퍼지 논리 시 스템(fuzzy logic system)을 이용한 함수 근사화 기반 제어 기법 들이 연구되었다 [1][2]. 이러한 기법들에서 외부의 시변 외란은 적응 제어 방식을 통하여 외란의 유계치를 추정하거나 [3], 르아 브노브 안정도 증명과정에서 균일 궁극 유계(uniform ultimate bounds) 분석을 통해 유계치로 간주되었다 [4]. 따라서 보다 시변 외란의 효율적인 보상을 위해 외란 관측기 이용한 방법들이 다양 한 비선형 시스템에 적용되고 있다 [5].…”
Section: 서 론 불확실성을 갖는 비선형 시스템을 위한 제어이론은 다양한 기 계 전기 시스템 등의 응용 분야에 적용되unclassified
“…Compared with the existing controls in [2,8,10,11,40,62], the adaptive fuzzy control laws presented in [47][48][49] have solved the tracking problem for nonlinear uncertain discrete-time systems with unknown control direction and input nonlinearities (such as dead zone, backlash-like hysteresis, and backlash), by using the reinforcement learning algorithm. • Uncertainty: In most practical situations, the systems under control are unknown or partially unknown [4,7,12,13,17,19,22,31,42,56,57,61]. These facts require specific control tools to deal with the controller design process, being one of the most extended ones the adaptive control paradigm.…”
Section: Introductionmentioning
confidence: 99%
“…In addition, the SPR condition, the Razumikhin Lemma, the frequency-distributed model, and the Lyapunov method are adopted for deriving the parameter adaptive laws. The main contribution of this manuscript lies in the following: (1) compared with the existing works [1, 2, 5-14, 16-34, 63], the considered class of systems is relatively large; (2) unlike [6,7,9,[23][24][25][26][31][32][33][34], the proposed design approach does not require a priori knowledge of the signs of control gains nor any information of the bound of input saturation; (3) in contrast to the adaptive control schemes [1-26, 31-34, 63], the number of adjustable parameters is reduced; (4) our work can handle systems with both constant and distributed time-varying delays; (5) all signals of the closedloop system are bounded; and (6) unlike the closely related works [1,4,63], the tracking errors converge asymptotically to zero.…”
Section: Introductionmentioning
confidence: 99%
“…[1][2][3][4][5][6][7][8][9][10][11][12] For example, Sarma et al [4] propose an approach combined with ANN to make out primal phonemes of Assamese language. RBF neural network is employed as an accessorial method to weaken the impact of nonlinearity and uncertainty on the nonlinear system.…”
Section: Introductionmentioning
confidence: 99%
“…RBF neural network is employed as an accessorial method to weaken the impact of nonlinearity and uncertainty on the nonlinear system. [5] Generally, according to structures, neural network (NN) can be categorized into two types, i.e., feed-forward neural network (FNN) [1,2,10,13,14] and recurrent neural network (RNN). [6,9,11,[15][16][17][18]20] We know that FNN can only represent static mappings and its approximation performance is easily influenced by training data because the scheme of weights update does not depend on internal network information.…”
Section: Introductionmentioning
confidence: 99%