This paper focuses on the attitude control problems of spacecraft with external interference and platform actuator failure. The Lagrange method is used to establish dynamic models of complex spacecraft composed of rotating appendages and platform, and the quaternion is used to describe spacecraft attitude kinematics. Second, a fault-tolerant control algorithm that combined adaptive fuzzy control with finite time sliding mode is proposed for the spacecraft platform, and fixed-time control schemes are proposed for rotating parts to achieve stable rotation of the spacecraft components relative to the platform. Finally, a numerical simulation is performed to verify the superiority and effectiveness of the proposed control laws, and comparisons with other control methods are presented.