In the dynamic landscape of mobile technology, where a myriad of options burgeons, compounded by fluctuating features, diverse price points, and a plethora of specifications, the task of selecting the optimum mobile phone becomes formidable for consumers. This complexity is further exacerbated by the intrinsic ambiguity and uncertainty characterizing consumer preferences. Addressed herein is the deployment of fuzzy hypersoft sets (FHSS) in conjunction with machine learning techniques to forge a decision support system (DSS) that refines the mobile phone selection process. The proposed framework harnesses the synergy between FHSS and machine learning to navigate the multifaceted nature of consumer choices and the attributes of the available alternatives, thereby offering a structured approach aimed at maximizing consumer satisfaction while accommodating various determinants. The integration of FHSS is pivotal in managing the inherent ambiguity and uncertainty of consumer preferences, providing a comprehensive decision-making apparatus amidst a plethora of choices. The elucidation of this study encompasses an easy-to-navigate framework, buttressed by sophisticated Python codes and algorithms, to ameliorate the selection process. This methodology engenders a personalized and engaging avenue for mobile phone selection in an ever-evolving technological epoch. The fidelity to professional terminologies and their consistent application throughout this discourse, as well as in subsequent sections of the study, underscores the meticulous approach adopted to ensure clarity and precision. This study contributes to the extant literature by offering a novel framework that melds the principles of fuzzy set (FS) theory with advanced computational techniques, thereby facilitating a nuanced decision-making process in the realm of mobile phone selection.