Balanced posture without dizziness is achieved via harmonious coordination of visual, vestibular, and somatosensory systems. Specific frequency bands of center of pressure (COP) signals during quiet standing are closely related to the sensory inputs of the sensorimotor system. In this study, we proposed a deep learningbased novel protocol using the COP signal frequencies to estimate the equilibrium score (ES), a sensory system contribution. Sensory organization test was performed with normal controls (n=125), patients with Meniere's disease (n=72) and vestibular neuritis (n=105). The COP signals preprocessed via filtering, detrending and augmenting during quiet standing were converted to frequency domains utilizing Short-time Fourier Transform. Four different types of CNN backbone including GoogleNet, ResNet-18, SqueezeNet, and VGG16 were trained and tested using the frequency transformed data of COP and the ES under conditions #2 to #6. Additionally, the 100 original output classes (1 to 100 ESs) were encoded into 50, 20, 10 and 5 sub-classes to improve the Manuscript