Using a complex micro-machined structure a novel optical-to-fluid pressure converter has been developed. The device offers immunity from electromagnetic interference and the potential for intrinsic safety. The effector, an improved version of a previous device, has been further miniaturized and fully micro-machined from silicon and glass. The device operates when light enters a sealed air-filled cell, formed within a silicon wafer, and is converted to heat by an absorber. The associated rise in temperature increases the pressure inside the cell and forces a diaphragm to move. The diaphragm movement is detected by a change in the back pressure of an impinging jet of fluid; which can be either pneumatic or hydraulic. The response time of the device, of the order of tens of milliseconds, has been further reduced as a result of miniaturization. This paper outlines the manufacturing technique and presents selected experimental test results.