“…With the advantages such as fast learning speed, high convergence rate, good generalization capability, and easier hardware implementation (Lin & Lee, 2009;Peng & Lin, 2011), the CMAC has been successfully applied to many fields; for example, identification (Lee et al, 2004), image coding (Iiguni, 1996), ultrasonic motors (Leu et al, 2010), grey relational analysis (Chang et al, 2010), pattern recognition (Glanz et al, 1991), robot control (Harmon et al, 2005;Mese, 2003;Miller et al, 1990), signal processing (Kolcz & Allinson, 1994), and diagnosis (Hung & Wang, 2004;Wang & Jiang, 2004). However, there are three main drawbacks of Albus' CMAC, i.e., larger required computing memory Leu et al, 2010;), relatively poor ability of function approximation (Commuri & Lewis, 1997;Guo et al, 2002;Ker et al, 1997), and difficulty of adaptively selecting structural parameters (Hwang & Lin, 1998;Lee et al, 2003).…”