A novel pyrophosphate Na7Ni3Fe(P2O7)4 was synthesized in two distinct forms, single-crystal and powder. Single-crystal X-ray diffraction was used to determine the crystal structure, and powder X-ray diffraction and scanning electron microscopy were used to examine the purity and morphology of the elaborated powder. This phosphate crystallizes in the P1¯ space group of the triclinic system with a = 6.3677 (2) Å, b = 9.3316 (4) Å, c = 10.8478 (4) Å, α = 65.191 (1)°, β = 80.533 (1)° and γ = 73.042 (1)°. The crystal framework is assembled from the linkage of centro-symmetrical clusters Ni2(Ni/Fe)2P4O28. Each cluster consists of two (Fe1/Ni1)O6 octahedra, two Ni2O6 octahedra and two P2O7 units. The linkage of these clusters is provided by two other P2O7 units to generate a three-dimensional structure with distinct tunnels in the [100], [010] and [001] directions, housing the Na+ cations. The infrared and Raman analyses show the characteristic bands of the pyrophosphate anion P2O74−. Remarkably, the magnetic investigations revealed the coexistence of two magnetic transitions at ~29 K and ~4.5 K with dominating antiferromagnetic interactions.