The young history of sputtering onto a liquid features great achievements in the green production of various metal and metal oxide nanoparticles (NPs) and nanoclusters (NCs). Studies on how the sputtering parameters affect the properties of NPs and NCs have elucidated their formation mechanism and marked a crucial role of liquid matrix in the nucleation and growth of particles, controlling their various properties. Current research has been devoted to making alloy bi-and trimetallic NPs with a high level of control over the NP structure, composition, and size via well-designed target systems, sputtering steps, and liquid matrix materials. In this minireview, we discuss the recent advances in the use of various types of targets to prepare different bi-and trimetallic NPs. In single target sputtering, systems with alternative configurations of metals, alloy targets, monometallic targets in sequence, and a combination of sputtering and chemical reactions have been developed. On the other hand, a double head system was introduced to widen the range of controllable sputtering parameters yielding more versatility in particle composition and fine structure. The synergistic and tuneable properties exhibited by the multi-metallic components in small NPs and NCs for their use in catalysis and optical applications are discussed.