The proposed idea in this paper is the constructive ramification of cluster designing mechanism floated in recently published work, multilayer cluster designing algorithm (MCDA) to ameliorate the performance in network lifetime. Novel algorithms for time slot allocation, minimizing the cluster head completion candidates, and cluster member selection\node affiliation to cluster head play underpinning roles to achieve the target. These incorporations in MCDA result in minimizing transmissions, suppressing unfavorable response of transmissions and near-equal size and equal load clusters. We have done extensive simulations in NS2 and evaluate the performance of E-MCDA in energy consumption at various aspects of energy, packets transmission, number of designed clusters, number of nodes per cluster, and unclustered nodes. It is found that the proposed mechanism optimistically outperforms the competition with MCD and EADUC.