Background:The present study aimed to analyze the scar formation mechanism following Roux-en-Y choledochojejunostomy (CJS) in a novel rat model of obstructive jaundice.
Methods:The biliary obstruction model of Sprague-Dawley (SD) rats was established in advance, and 24 rats were randomly divided into 4 groups (control group, 1-day ligation group, 3-day ligation group, and 5-day ligation group). Changes in postoperative weight, common bile duct diameter, and laboratory indexes were analyzed to determine the best operation time. Roux-en-Y CJS in rats was studied based on the model, and the rats were randomly divided into 4 groups [control group, 3-day choledochojejunostomy (CJS) group, 7-day CJS group, and 30-day CJS group]. The same indexes were analyzed, and the characteristics of scar formation were evaluated by histopathology and polymerase chain reaction examination.Results: The third day after common bile duct ligation is the best time for a Roux-en-Y CJS. The common bile duct diameter expands to 4.2 mm on average, and these physiological characteristics are consistent with current standard clinical findings. After completing CJS, the rats' weight returned to normal levels, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), direct bilirubin (DB), and C-reactive protein (CRP) indexes gradually decreased (P<0.05). Anastomotic stoma diameter tended to narrow with time and was significantly narrower on day 30 than preoperation. After CJS, the expression of α-smooth muscle actin (α-SMA) peaked in the early stage and was still higher than that of the control group in the bile duct wall 1 month postoperatively (P<0.05). Transforming growth factor-β1 (TGF-β1) expression gradually increased and was higher than that of the control group at each stage postoperatively (P<0.05).
Conclusions:The rat Roux-en-Y CJS model is more in line with our surgical model, and the clinical condition has potential applicability for the study of CJS scar formation. Scar formation following CJS in rats is characterized by the activation of fibroblasts caused by early inflammatory stimulation, which leads to the proliferation of collagen and smooth muscle fibers, resulting in scars.