Variable-DOF (or kinematotropic) mechanisms are a class of reconfigurable mechanisms that have varying degrees of freedom (DOF) in different motion modes and can be reconfigured without disassembly. However, the number of proposed variable-DOF multi-loop planar mechanisms is currently limited. This paper introduces a new 8-link variable-DOF planar mechanism that has five motion modes. Firstly, the 8-link variable-DOF planar mechanism is described. Then, reconfiguration analysis of the mechanism is performed using a hybrid approach that combines elimination and computer algebraic geometry methods. The analysis reveals that the 8-link mechanism has one 2-DOF motion mode and four 1-DOF motion modes. It can switch among three motion modes at four transition configurations and between two motion modes at the remaining four transition configurations. The paper also highlights the geometric characteristics of the mechanism in different motion modes. In contrast to variable-DOF planar mechanisms presented in the literature, the proposed 8-link mechanism has two inactive joints in one of its 1-DOF motion modes. Moreover, both closed-loop 4R kinematic sub-chains of the mechanism must appear as either a pair of parallelograms or a pair of anti-parallelograms in the same motion mode. As a by-product of this research, a method for factoring trigonometric functions in two angles is also proposed.