Purpose
To design, control and evaluate photovoltaic (PV) systems, an accurate model is required. Accuracy of PV models depends on model parameters. This study aims to use a new algorithm called improved social spider algorithm (ISSA) to detect model parameters.
Design/methodology/approach
To improve performance of social spider algorithm (SSA), an elimination period is added. In addition, at the beginning of each period, a certain number of the worst solutions are replaced by new solutions in the search space. This allows the particles to find new paths to get the best solution.
Findings
In this paper, ISSA is used to estimate parameters of single-diode and double-diode models. In addition, effect of irradiation and temperature on I–V curves of PV modules is studied. For this purpose, two different modules called multi-crystalline (KC200GT) module and polycrystalline (SW255) are used. It should be noted that to challenge the performance of the proposed algorithm, it has been used to identify the parameters of a type of widely used module of fuel cell called proton exchange membrane fuel cell. Finally, comparing and analyzing of ISSA results with other similar methods shows the superiority of the presented method.
Originality/value
Changes in the spider’s movement process in the SSA toward the desired response have improved the algorithm’s performance. Higher accuracy and convergence rate, skipping local minimums, global search ability and search in a limited space can be mentioned as some advantages of this modified method compared to classic SSA.