The recently coined Internet of Things (IoT) paradigm leverages a large volume of heterogeneous network elements (NEs) demanding broad connectivity anywhere, anytime and anyhow, fueling the deployment of innovative Internet services, such as Cloud or Fog Computing, Data Center Networks (DCNs), Smart Cities or Smart Transportation. The proper deployment of these novel Internet services is imposing hard connectivity constraints, such as high transmission capacity, reliable communications, as well as an efficient control scheme capable of enabling an agile coordination of actions in large heterogeneous scenarios. In recent years, novel control schemes, such as the so-called Path Computation Element (PCE) has gained momentum in the network research community turning into real PCE implementations. Indeed, there is a wealth of studies assessing the PCE performance, clearly showing the potential benefits of decoupling routing control tasks from the forwarding nodes. Nevertheless, recognized the need for a control solution in IoT scenarios, there is no much published information analyzing PCE benefits in these IoT scenarios. In this paper, we provide an insight particularly demonstrating how the PCE may gracefully provide support to the service composition in an agile manner, handling the specific constraints and requirements found in IoT scenarios. To this end, we propose a novel PCE strategy referred to as Service-Oriented PCE (SPCE), which enables network-aware service composition.