Silicon nitride ceramics are regarded as a promising material for high-temperature structural applications due to their remarkable characteristics, including high strength, hardness, thermal conductivity, low dielectric properties, and resistance to creep at elevated temperatures. However, their susceptibility to catastrophic fracture at high temperatures remains a concern. Herein, Si3N4/BN fibrous monolithic ceramics have been successfully prepared by employing wet-spinning and hot-pressing techniques. We delved into the design and optimization of the spinning slurry and examined how the Si3N4/BN fiber diameter affects the ceramics’ microstructure and mechanical properties. The spinning slurry exhibited exceptional stability and spinnability. Decreasing the fiber diameter contributed to material densification and improved mechanical properties. Notably, when the fiber diameter is 0.9 mm, the fabricated Si3N4/BN fibrous monolithic ceramics demonstrate a carbon content of 0.82%, a three-point bending strength of 357 ± 24 MPa, and a fracture toughness of 8.8 ± 0.36 MPa·m1/2. This investigation offers valuable insights into producing high-performance Si3N4/BN composite ceramics utilizing hot-pressing technology.