Fas ligand (FasL), an apoptosis-inducing member of the TNF cytokine family and its receptor, Fas, are critical for shutdown of chronic immune responses1-3 and prevention of autoimmunity4,5. Accordingly, mutations in their genes cause severe lymphadenopathy and autoimmune disease in mice6,7 and humans8,9. FasL function is regulated by deposition in the plasma membrane and metalloprotease-mediated shedding10,11. We generated gene-targeted mice that selectively lack either secreted FasL (ΔsFasL) or membrane-bound FasL (ΔmFasL) to resolve which of these forms is required for cell killing and to explore their hypothetical non-apoptotic activities. Mice lacking sFasL (FasLΔs/Δs) appeared normal and their T cells readily killed target cells, whereas T cells lacking mFasL (FasLΔm/Δm) could not kill cells through Fas activation. FasLΔm/Δm mice developed lymphadenopathy and hyper-gammaglobulinaemia, similar to FasLgld/gld mice, which express a mutant form of FasL that cannot bind Fas, but surprisingly, (on a C57BL/6 background) FasLΔm/Δm mice succumbed to SLE-like autoimmune kidney destruction and histiocytic sarcoma, diseases that occur only rarely and considerably later in FasLgld/gld mice. These results demonstrate that mFasL is essential for cytotoxic activity and constitutes the guardian against lymphadenopathy, autoimmunity and cancer whereas excess sFasL appears to promote autoimmunity and tumorigenesis through non-apoptotic activities.