2023
DOI: 10.1109/access.2023.3277253
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Similarity Based Unsupervised Technique for Training Convolutional Filters

Abstract: Achieving satisfactory results with Convolutional Neural Networks (CNNs) depends on how effectively the filters are trained. Conventionally, an appropriate number of filters is carefully selected, the filters are initialized with a proper initialization method and trained with backpropagation over several epochs. This training scheme requires a large labeled dataset, which is costly and time-consuming to obtain. In this study, we propose an unsupervised approach that extracts convolutional filters from a given… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 51 publications
0
0
0
Order By: Relevance