In this paper, a new single-switch nonisolated dc-dc converter with high voltage transfer gain and reduced semiconductor voltage stress is proposed. The proposed topology utilizes a hybrid switched-capacitor technique for providing a high voltage gain without an extreme switch duty cycle and yet enabling the use of a lower voltage and R DS−ON MOSFET switch so as to reduce cost, switch conduction, and turn-on losses. In addition, the low voltage stress across the diodes allows the use of Schottky rectifiers for alleviating the reverse-recovery current problem, leading to a further reduction in the switching, and conduction losses. The principle of operation and a comparison with other high step-up topologies are presented. Two extensions of the proposed converter are also introduced and discussed. Simulation and experimental results are also presented to demonstrate the effectiveness of the proposed scheme.Index Terms-DC-DC power conversion, high step-up converter, pulsewidth modulated, switched-mode power supplies.