The novel Coronavirus, also known as Covid19, is a pandemic that has weighed heavily on the socio-economic affairs of the world. Although researches into the production of relevant vaccine are being advanced, there is, however, a need for a computational solution to mediate the process of aiding quick detection of the disease. Different computational solutions comprised of natural language processing, knowledge engineering and deep learning have been adopted for this task. However, deep learning solutions have shown interesting performance compared to other methods. This paper therefore aims to advance the application deep learning technique to the problem of characterization and detection of novel coronavirus. The approach adopted in this study proposes a convolutional neural network (CNN) model which is further enhanced using the technique of data augmentation. The motive for the enhancement of the CNN model through the latter technique is to investigate the possibility of further improving the performances of deep learning models in detection of coronavirus. The proposed model is then applied to the COVID-19 X-ray dataset in this study which is the National Institutes of Health (NIH) Chest X-Ray dataset obtained from Kaggle for the purpose of promoting early detection and screening of coronavirus disease. Results obtained showed that our approach achieved a performance of 100% accuracy, recall/precision of 0.85, F-measure of 0.9, and specificity of 1.0. The proposed CNN model and data augmentation solution may be adopted in pre-screening suspected cases of Covid19 to provide support to the use of the well-known RT-PCR testing.